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Exact nonreflecting houndary canditions are considered for exte-
rior three-dimensional time-dependent wave problems. These in-
clude a nonlocal condition for acoustic waves based on Kirchhoff's
formula, orginally proposed by L. Ting and M. J. Miksis [ J. Acoust.
Sac. Am. 80, 1825 {1986), and an analogous condition for elastic
waves. These conditions are computaticnally attractive in that their
temporal nonlocality is limited to a fixed amount of pastinformation.
However, when a standard nondissipative finite difference stencil
is used as the interior scheme, a long-time instability is exhibited
in the numerical solution. This instability is analyzed for a simple
one-dimensional model problemn. 1t is eliminated once the standard
interior scheme is replaced by the dissipative Lax-Wendroff
scheme. In this case stability is demonstrated experimentally, and it
is also established theoretically in the one-dimensional case. @ 1995
Academic Press, Inc.

INTRODUCTION

The numerical solution of exterior wave problems has caught
much attention in the last few years. Such problems occur
in many fields of application, including underwater acoustics,
geophysics, and electromagnetism. Various numerical imethods
for the solution of wave problems in infinite domains are dis-
cussed in a recent monograph | 1], An important and comnion
method in this category is based on the use of artificial bound-
arics and nonreflecting boundary conditions. Tn this paper we
concentrate on the use of this method in the context of three-
dimensional acoustic and elastic wave problems.

Consider a wave problem in the unbounded domain exterior
to a scatterer or an obstacle with boundary T, as illustrated in
Fig. 1. This problem is to be solved numerically using a finite
difference or a finite element method. Since such methods

* Current address: Teenomalics Technologies Lid., Delta House, Herezeliya
46733, tsracl.

0021-9998/95 $6.00
Copyright © [995 by Academic Press. Inc,
Al rights of reproduction in any form reserved.

require a finite computational domain, the original infinite do-
nain is truneated by introducing an artificial boundary % around
the obstacle. Thus a finite computationai domain €} is defined,
which is bounded internally by I' and externally by 9. The
infinite domain exterior to 9 (namely the domain outside (1)
is denoted D. The position of the artificial boundary 9 is chosen
such that it encloses all the “‘irregularities” in the problem
domain. Thus in {) the medium may be inhomogeneous, aniso-
tropic, or even behave nonlinearly, and it may include wave
sources and nonzero initial conditions. All these “‘irregulari-
ties”” are taken care of by the numerical scheme to be employed
in {} (assuming that it has the appropriate capabilities). On
the other hand, in £ the medium is usually assumed to be
homogeneous, isotropic, and linear, not to include any wave
sources, and to be at rest for times ¢ = Q.

Now, to complete the statement of the problem in ), a
boundary condition must be imposed on 4. This boundary
condition should have the property that waves impinging 9
from inside £} are “‘absorbed”” by B without generating reflec-
tion. It is well known that when over-simplified boundary condi-
tions arc used on 9B, they may produce large spurious reflection
of waves from 9B back into £), and thus they may pollute the
computed solution, Various special boundary conditions on %
have been proposed by many authors in the last two decades
(o reduce the amount of spurious reflection or totally annihilate
. These are called non-reflecting boundary conditions
(NRBCs). See [2] {or a review on the subject, After a NRBC
is imposed on 9, the statement of the problem in {2 is complete,
and a finite difference or a finite element scheme is used in £}
to solve the problem. Of course, the NRBC on @ must be
discretized along with the governing field equations in {1,

NRBCs may be local or nonlocal. Sequences of local NRBCs
with increasing order were proposed, e.g., by Engquist and
Majda [3] and Bayliss and Turkel {4], for both the time-depen-
dent and the time-harmonic cases. These NRBCs are approxi-
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FIG. 1. A typical setup for solving a wave problem in the unbounded
domain exterior 10 a scatterer with boundary T. B is the artifical boundary
and £} is the computational domain. On %, a nonreflecting boundary condition
(NRBC) is applied.

mate, and they are local in both space and time. Hagstrom and
Keller [5] and Keller and Givoli {6—8] each devised an exact
nonlocai NRBC for elliptic problems. The latter NRBC is based
on the Dirichlet-to-Neumann map of the differential operator.
From a computational standpoint the spatial nonlocality of the
NRBC may sometimes be regarded as inconvenient [1], but
this is the price one has to pay in order to eliminate the infinite
domain ) in an exact fashion. It turns out [1] that in many
cases this price is reasonably small, considering the robustness
of the exact NRBC and the high accuracy of the results obtained
by using it.

Similarly, in time-dependent problems an exact NRBC must
be nonlocal in both space and time, except in very simple cases.
NRBCs which are nonlocal in time were proposed, e.g., in [9-
12]. As opposed to the spatial nonlocality of the NRBC, the
temporal nonlocality may pose very serious computational dif-
ficulties. The main difficulty is related to the fact that the scheme
must possess ‘‘memory,”’ and thus typically the entire history
of the nodal values of the solution on the boundary & must be
accumulated and stored during the solution process. This means
that the required computer storage and computing time are ever
increasing as time goes on. In two and three dimensions this may
render the solution procedure impractical. A simple, although
sometimes effective, way to reduce the amount of storage and
computational effort is to use a “‘limited memory™’ time-step-
ping technique. In this technique only the data from a limited
number of previous time steps are maintained in each time-
step, whereas earlier data are deleted and are not used in the
computation. The temporally nonlocal NRBCs proposed in
[9. 10] employ this procedure.

Another difficulty related to the use of a NRBC which is
nonlocal in time is that it may require, on the discrete level,
the use of non-standard time-integration schemes for integro-
differential systems of equations. This occurs if convolution-
type integrals appear in the formulation, as in the case where
the Dirichlet-to-Neumann boundary condition [6] is generalized
to the time-dependent case in a straightforward manner [1].

The difficulties associated with the nonlocality in time have
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led most authors to constder only temporally local NRBCs.
This was also the thrust for introducing a semidiscrete Dirichlet-
to-Neumann NRBC [13] which is spatially nonlocal but tempo-
rally local. The latter NRBC, although quite effective, cannot
be exact with respect to the original infinite domain problem
due to its locality in time.

In this paper we discuss the use of NRBCs which are based
on Kirchhoff-type formulae. The idea to use the Kirchhoff
formula as a NRBC is originally due to Ting and Miksis, who
considered three-dimensional time-dependent acoustic wave
problems [14]. This NRBC is exact and, thus, unavoidably
nonlocal in both space and time, but it does not involve con-
stantly increasing storage space and computing time, since it
depends on a fixed amount of past information. Moreover, it
does not include any convolution integrals. Therefore it avoids
the difficulties otherwise associated with nonlocality in time.

In the next section we discuss the Kirchhoff NRBC for
three-dimensional acoustic waves. We also derive an analogous
condition for three-dimensional elastic waves. In the section
that follows we combine the Kirchhoff NRBC with a standard
nondissipative finite difference stencil used in the interior of
the computationat domain {). We present the results of some
numerical experiments performed in a spherically symmetric
case. These results indicate the presence of long-time instabili-
ties in the numerical solution, generated by the Kirchhoff
NRBC. We characterize these instabilities and analyze them
by considering a simple one-dimensional model problem.

Then we replace the standard interior scheme by the dissipa-
tive Lax—Wendroff scheme, and we repeat the numerical exper-
iments in the spherically symmetric case. This time the numeri-
cal scheme does not exhibit any instability, We again consider
the one-dimensional model preblem and show that stability is
guaranteed by applying the Goldberg—Tadmor theory. We close
the paper with some concluding remarks.

KIRCHHOFF-TYPE NRBC’S

We first consider acoustic waves in the three-dimensional
infinite domain % exterior to an obstacle or a scatterer. The
wave u(X, 1) satisfies the scalar wave equation,

a’u

ﬁzcz Viu+ flx, 1), O

in &. Here ¢ is time, ¢ is the wave speed, and f is a given
source function. Some boundary condition is given on the obsta-
cle surface T', say the Dirichlet condition,

w=g onl. )

Here g is a given function of x € T" and time. At time r = 0,
the initial conditions are given throughout the domain:

U(, 0) = (), aa—f(x, 0) = vy(x). 3)
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FIG. 2. The setup for using the Kirchhoff-type NRBC. Two artificial
boundaries, & and &, ar¢ introduced. The computational domain is bounded
internally by T’ and externally by .

Here u; and v, are given functions. We assume that the functions
f uy, and vy have finite support. Typically their support is a
certain region around the scatterer.

Following Ting and Miksis [14], we now introduce rwo ar-
tifical boundaries. The setup is shown in Fig. 2. First, an artificial
boundary & is chosen to enclose the scatterer. Then, some
distance away from ¥, a second artificial boundary % is intro-
duced. The computational domain {2 is bounded internally by
the surface of the scatterer I, and externally by 3. The boundary
¥ is chosen to lie outside of the support of £ wy, and v,.
Thus, outside & (and, in particular, between ¥ and %) the
homogeneous counterparts of (1) and (3) hold. The choice for
the position of 9B will be discussed later; however, it is clear
that in order to make the computational domain {} small, B
should be set close to &.

We remark that in the region which lies between T and &,
a wave equation which is more complicated than (1) may be
considered without affecting the validity of the ideas that fol-
low. In particular, the medium in this region may be inhomoge-
neous or anisotropic, or may behave nonlinearly. A nonlinear
behavior in the region around I' occurs, for example, if the
scatterer is covered with a cloud of bubbles.

Next we recall the Kirchhoff formula associated with the
wave equation (1). This formula is discussed and proved in
[15, 16]; it is a way to express Huygen’s principle in three
dimensions. Let & be any closed surface in % which encloses
the scatterer. For example, g may be 1" or & or & in Fig. 2.
Denote the infinite domain exterior to & by B Let x be any
point in 9R. Then Kirchhoff’s formula is

1
wxy 1) = 5= [~ 171 d¢
1 1
7z ([ Jﬁ(;) (4)
1{ou 1 or|ou
‘;[5];5[5])6’5
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Here r = |x — £|, and 0/¢ v is the normal. derivative at & on
. The operator [-] is the refarded value operator, defined by

[f] = f& Dlrmtrrc- (5)
_ Now we return to the setup shown in Fig. 2. We choose
¥ = ¥, and we choose x to lie on the boundary 3. Now since

/= 0 in the domain exterior to &, the first term in (4) drops
out, and we are left with

1 d {1 1| du
“a2ls ([“]5;(;) _[a_}

—lﬂ[ Ddf x € B.
rcdv| ot

This equation can be used as an exact boundary condition,
which involves # on % and the retarded values of w, du/d v,
and du/or on &F. The idea to use the Kirchhoff formula as a
NRBC is due to Ting and Miksis [14]. However, they did not
attempt to implement a numerical scheme that incorporates (6)
and to test the actual performance of this NRBC. We shall do
this in the next sections.

The exact NRBC (6) is nonlocal in space and time. The
nonlocality in time is, however, limited to a fixed amount of
past data, because the retarded value T = t — r/c is bounded
from above and from below, i.e., # — rp/c S 7=t — Fudfc.
Here r;, and r_,, are the extremal values of r, which are the
minimal and maximal distances between the two artificial
boundaries, F and B. For example, if ¥ and & are concentric
spheres with radil Ry and Ry, respectively, then the retarded
time 7is in the interval (Rg — Ry e = 7= (Rg + Ry)c. In
other words, the memory required by the numerical scheme
does not grow in time. Clearly, this is a big advantage of
the scheme.

It is interesting to note that the NRBC (6) is inherently three-
dimensional. In a sense, the two-dimensicnal case is harder,
because an exact boundary condition in that case would not
have a limited nonlocality in time such as in (6). This is related
to the fact that the Green’s function in even dimensions has an
infinitely long *‘tail.””

Now we turn to the case of elustic waves. Problems in
unbounded domains involving the propagation of elastic waves
are typical to geophysics. In this case, the scalar wave equation
(1) is replaced by the equations of three-dimensional elastody-
namics in the displacement vector field u:

u(x, 1) =

(6)

azuA
atz =aoy;t fo )]
T = Cijkitiy s (3)

Here u; is the displacement component in the ¢ direction (i =
1, 2, 3), m is the mass density, o is the stress component, the
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c,u are the elastic moduli, and f£; is the body force component
in the i direction. A comma indicates partial differentiation,
and the summation convention with respect to repeated indices
is in force. Some boundary conditions are prescribed on the
scatterer surface I'. The initial conditions

au,
14(x, 0) = teg(X); a—tz (%, 0) = pa(X), )

are given throughout the infinite domain . The setup is again
as in Fig. 2. As in the acoustic case, we assume that f;, 1, and
v vanish identically in the domain exterior to &. We also
assume that in this domain the medium is homogeneous and iso-
tropic.

We consider the fundamental solution of elastodynamics for
a time-dependent concentrated body force which is suddenly
apphied at time ¢ = 0 at a point in an unbounded isotropic
three-dimensional medium. See Wheeler and Sternberg [17]
and Achenbach [18]. We denote the fundamental solutions for
the displacement and stress components, respectively, by

wi(x, 5 &k F(1), o¥(x, 5§k F(1). {10)
Here, u# is the displacement component in the [ direction at
point x at time ¢ due to a concentrated body force acting at
point £ in the & direction and having the intensity F(¢) for ¢ =
0. The stress % has a similar interpretation. These fundamental
solutions involve the retarded values of F{r); more specifically
they have the forms

uF = A, ﬂjT SF(t = rs)ds + Ay [Flo+ As[Fl, (1)
o

o5 =B ["sF (1= r)ds + B[ F),
{'L

gF aF
+ B +B|— | +Bs| —|.
R Rk

(12)
Here ¢, and ¢y are the longitudinal and transverse wave speeds,
respectively, r = {x — £|, and

[F]. = F(: i), [Flr = F(:—i).
CL Cr

The coefficients A; in (11) and B, in (12) are rational functions
involving r as well as the components x—§;. Their expressions
can be found in {17, p. 80]; (18, p. 100].

Now, the following identity can be proved [18, p. 103]:

(13)

] 3
wi 1) = o3 | Ak (1% k mony(6,1)
- (14)
- Hj()ﬁ" (f, L X, k: ui(gs t))} d§
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Here £ is a point on ¥, x is a point in the domain exterior to
&, and #n; is the j component of the unit outward normal to .
Equation (14) is analogous to Kirchhoff’s formula in the elastic
case. As in the acoustic case, we now choose x to lie on the
boundary % (see Fig. 2). Then (14) can be used as an exact
NRBC, which involves 1, on B and (via (11)—(13)) the retarded
values of u;, oi;, and du/dr on . As before, this NRBC is
nonlocal in space and time, but the nonlocality in time is limited
to a fixed amount of past information, depending on the minimal
and maximal distances, ry;, and r..,, between the boundaries
¥ and . More specifically, the retarded value 7 = ¢t — r/e,
involved in the integrand of (14), is bounded from above and
from below, ie., t — ryfor = T =t — Fpo/c; (recall that
always ¢ < cL).

THE NUMERICAL SCHEME

In this section we consider the case of three-dimensional
acoustic waves. We describe in general terms the numerical
scheme which is used in the computational domain £2, incorpo-
rating the Kirchhoff NRBC (6).

We choose to employ an explicit finite difference stencil for
(1) in £}, This choice is suggested by the fact that (6) is itself
an explicit formula, since the value u(x, ¢} on the left side of
(6) depends only on values at retarded times, namely at times
not later than 7 = ¢ — ry,,/c. Therefore, it is natural to combine
the explicit formula (6) on & with an explicit finite difference
stencil in £}, in order to obtain a method which is totally explicit.
We use a constant time-step interval A7 and denote the time
after n time steps by £, = nAt. We also denote «} the approxi-
mate value of the solution « at grid point A at time 1,.

For an interior grid point A, we use some explicit s-level
finite difference stencil, of the general form

Wi = pw, e u e, (15)

Here D, is an operator, and u” is the vector whose entries are
the values u} . A specific choice for stencil (15) in the spherically
symmetric case will be given in the next section. For a grid
point A on the boundary I we simply have

ntl — Lntl
Ha ﬁgA 1

(16)

where g**! is the value of the function g (see (2)) at grid point

A at time 2,4+,. Finally, we must obtain a formula which is the
discrete version of the Kirchhoff NRBC (6). To this end we
first introduce the following approximations that will be used
in evaluating the Kirchhoff integral.

[.  Numerical integration,

[, r@ag= 3 Wit

ASTy

(17
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here the W, are constant weights, f, is the value of f at grid
point A, and % is the set of all grid points on the boundary &.

2. Linear interpolation between time steps. I ¢ € [1,, 1,+:]
then we define

Fay =1

nt+l _.

Vi
At (

t—t)+ (18)

The function f (1) is a continuous piecewise-linear function
which interpolates the values f, at the grid points.

3. Approximate time and space derivatives,

2~p, L=p,
at dv

(19)
Here D, is a difference operator in time, and D, is a difference
operator in the spatial direction normai to &.

For the time being, we leave the approximations (17) and (19)
general; they will be specialized in the next section. Using
(17)—(19) in (6), we obtain the discrete version of the NRBC,
for a grid point A on the boundary &,

1 d {1
rtl — W —_— | -
Uy 47?91;‘, B([“B]av(r)

0)
LDy - L [Dcutza])-
¥ dv

rc

Here r is the distance betwéen grid points A {on %) and B
{on ¥). The retarded value operator [-] is defined similarly to
(5), i.e.,

L] = folD] o - (21)

This completes the general description of the numerical
scheme. It starts from the given initial values «3 of all the grid
points, and then steps in time via the formulae (16) for grid
points on I, (15) for interior grid points, and (20) for grid
points on 3.

After the solution in the computational domain ( and on B
is found, we may, in principle, use a discrete version of (4) to
obtain an approximate solution in D, namelyyutside of the
computational domain. In doing so we choose & = %, and the
first term in (4) drops out as before. However, this requires
storing the history of the solution at grid points on %, which
we would normally wish to avoid.

NUMERICAL EXPERIMENTS AND
LONG-TIME INSTABILITY

We now specialize the numerical procedure in the previous
section to the spherically symmetric case. The problem consid-
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ered is governed by Eqgs. (1)—-(3), and the setup is as in Fig. 2,
but I', &, and @& are all spherical surfaces, g(¢) in (2) is a
function of time alone, and we also choose for simplicity f =
0 and vy = vy = 0. We refer to a spherical system of coordinates
where the radial coordinate is denoted p. The radii of T', &,
and B are denoted Ry Ry, and Ry, respectively. We introduce
the new variable v(p, t} = pu(p, t), and for convenience, we
regard v rather than « as the primal variable. The wave equation
(1) reduces in the present case to

v L,
S = C .
ar apt

(22)

The boundary condition on 1" is # = g (see (2)), namely v =
Rrg. The exact solution of the problem is

0, 1 << (p_R[)/C

.23
Rrg(t — (p— Rr)c), t=(p— Rr)lc

vip, 1) =

Moreover, in the spherically symmetric case (but not in the
general case) it is possible to find an exact NRBC on & which
is purely local [1). This NRBC is

Juv  du

cap+ Y 0 on@®. 24)
We shall compare the numerical solution obtained using the
nonlocal Kirchhoff NRBC (6) with that obtained by using the
local NRBC (24) on 9 and with the exact solution {23).

In the computational domain {} we use equally spaced grid
points in the radial direction and denote the spacing h. The
interior stencil (15) is chosen to be the standard non-dissipative
central difference stencil for the wave equation, namely,

t 2
it = (QA—) (v, —2vi+vi ) +2vi—vil. (25

h

This stencil is known to be stable if the Courant number
cAi/h is not greater than one.

In this spherically symmetric case we reduce the Kirchhoff
integral in (6) to a one-dimensional integral over the angular
interval [0, m]. We choose the trapezoidal rule for the numerical
integration { 17) used in evaluating this integral, with N, equally
spaced integration points in [0, 7]. We also choose

dv(p, 1) v(pt+Ar)—vipt— Ay (26)
ar 24t ’

dv(pt) _vipty—vip—vip—h1)

av h ’

as the difference approximations (19).
We set ¢ = | and Ry = 0.1. We take g(r) = sin w! in (2),
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FIG. 3. The solutions v{Rg, ¢) obtained by using the local NRBC (24)
and the Kirchhoff NRBC (6), for g{t) = sin 4¢ and the parameters Ry = 0.7,
Rg = 1.0, N, = 300, N, = 900, and At = {.0015.

where w is a given constant frequency. The parameters that are
left to be chosen are the frequency w, Ry, Ry, the number of
grid points N,, (in the radial direction, excluding the point at
p = Rr), the number of integration points N, and At The
grid parameter / is determined by h = (Ryz — Rr)/Ng. The
stability condition associated with (25) dictates A1 = h/c. We
choose Ry such that & coincides 'with a grid point. For each
choice of the parameters we obtain a numerical solution by
using the Kirchhoff NRBC on & and another one by using
the local NRBC (24) on 9. In the latter case, we use the
approximations (26) to discretize (24).

First we consider @ = 4, and we choose Ry = 0.7, Ry =
1.0, Ny, = 300, and Ny, = 900. Then 2 = 0.003 and we set
At = h/(2c) = 0.0015. The two artificial boundaries, & and
9, are 100 grid points apart from each other. Figure 3 shows
the two numerical solutions at p = Rg as a function of time.
Up to about ¢+ = 7, both solutions agree very well with the
exact solution (23), namely they are zero for t << 0.9 and behave
like the shifted datum g in later times. However, at about ¢ =
7 the Kirchhoff solution starts to develop a clear instability,
which manifests itself by the appearance of rapidly growing os-
cillations.

We consider the normalized error defined by

CH‘O[’(I) = H vexacl( !) - vnumerical( I) Iml vexacl( f)“, (27)

where

(28)

= (S war) "

30

——— | 0CAl NRBC
sasrsasseesss  Kirchholf

error

0.0 20 40 5.0 8.0
time

FIG. 4. The normalized errors, as defined by (27}, corresponding to the
two numerical solutions shown in Fig, 3.

The sum in (28) is over all the grid points. Figure 4 shows the
error corresponding to the two numerical solutions as a function
of time. Whereas the error generated by the NRBC (24) remains
small, that generated by the Kirchhoff (NRBC) grows exponen-
tially after a certain period of time.

To check the sensitivity of the instability on the type of the
boundary data prescribed on the scatterer surface I', we replace
the persistent wave g(#) = sin 47 by a short pulse of duration
/4 with a half sine-wave shape. Figure 5 shows the numerical
solutions at p = Ry as a function of time. Again, an instability
develops in the Kirchhoff case at about r = 7, while the solution
obtained by using the local NRBC (24) remains stable.

We define T(e) as the smallest value of ¢ which gives, for

5.0
— | GCal NRBC
3.0 4 Kirchhoff
TN
E]
1.04
-2.0 4
-5.0 v v T T T
0.0 2.0 4.0 6.0 8.0 10.0
time

FIG. 5. The solutions v(Ra, ?) obtained by using the local NRBC (24)
and the Kirchhoff NRBC (6), for g{s) which is a pulse of duration m/4 with
a half sine-wave shape, The same parameters as in Fig. 3 are used.
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TABLE I

Various Parameters and the Corresponding Time-to-Instability Measure 7(0.2) Obtained by Using the Kirchhotf NRBC on %,

Cuse w Ry Ry Naie N N h Ar T(0.2)
1 4 0.8 1.1 3 10 30 0.1 0.05 12.55
2 1 19.05

¢.1 29 L}

3 0.09 1.71
0.01 13.44

4 50 7.25
100 8.35

5 i5 50 150 0.02 0.01 10.25
30 106 300 (.01 0.005 10,92

6 (.2 9 1.25
0.6 5 10.45

1.0 1 2.25

7 1.8 2.1 20 60 20.75
38 4.1 40 120 11.50

8 2.1 13 20 60 5.15
4.1 i3 40 120 7.45

9 4 4.17 45 3 4 120 11 0.01 101.64

Note. A blank entry indicates the same valuee as in Case 1.

the Kirchhoff solution, error(f) = e, using the definition (27).
In other words, T(e) is the time it takes the Kirchhoff solution
to reach an error of magnitude e. In the case just considered
we measured 7¢0.2) = 8.57. We have repeated the numerical
solution procedure using the Kirchhoff NRBC with various
combinations of parameters and obtained 7(0.2) in each case.
The value T(0.2) serves as a measure for the time it takes
the instability to develop. The instability occurred in all the
experiments that we have conducted using the Kirchhoff NRBC
incorporated in the nondissipative scheme, although T(0.2) de-
pends strongly on the chosen parameters, as we shall see.

Table 1 summarizes the result of these experiments. The
datum g = sin wr was used in all the experiments. The column
Ny, indicates the distance in number of grid points between &
and %. The first line of data, denoted ‘‘Case 1, is the basic
configuration that we refer to in later experiments. A blank
entry in Table 1 means that the corresponding value is the same
as in Case 1. For the parameters of Case | we obtain
T(0.2) = 12.55, This result is better than the one obtained in
the case considered previously; not only the instability develops
later, but also the computational effort in Case 1 is much smaller
due to the crudeness of the discretization in space and time.
This shows that a careful choice of the parameters may lead
to significant improvements.

The following conclusions may be drawn from the results
presented in Table I (and from other experimental results which
are not presented) with regard to the influence of the various
parameters on the time it takes the solution to exhibit an insta-
bility:

1. The solution remains stable longer for lower frequencies.

2. Longer times to instability are obtained with smaller
time steps.

3. The ratio N, /N,, = 3 yields the best results as far as
the time to instability is concerned.

4. There is an optimal value for the distance between &
and 9, for which the time to instability is minimized. In our
case it is the value Ry = 0.8, which corresponds to a distance
of Ng, = 3 grid points between & and @&.

In the last case described in Table 1 (Case 9) we fixed N,
40 and At = 0.01, which amounts to a fixed computational
effort, and we looked for the configuration that would give the
longest time to instability. The parameters Ry = 4.17, Ry =
4.5, and Ny, = 120 yield 7(0.2) = 101.64, which was the best
result we obtained. The same parameters but with w = 0.1 give
T{0.2) = 158.90.

We have also implemented the scheme for the general asym-
metric three-dimensional case and applied it to a few model
problems. We used a spherical artifical houndary as before,
but with asymmetric initial data. Accurate results have been
obtained up to a certain point in time, when numerical instability
started to develop as in the spherically symmetric case. This
is of course expected, since the symmetric unstable mode exists
in the asymmetric case as well.

A ONE-DIMENSIONAL MODEL PROBLEM

The instability observed in the numerical experiments above
is hard to analyze, even in the context of spherically symmetric
waves, due to the complexity involved in treating the integral
in the right side of the Kirchhoff NRBC (6), or its discretization
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(20). Therefore, we consider here a simplified model problem
which is easier to handle and gives more insight into the instabil-
ity phenomenon.

We consider one-dimensional waves propagating in a semi-
infinite rod or plane waves in the semi-infinite space x > 0.
The governing equations for the wave u(x, t) are

du 0

ar Coap 70 (29)
w(0,1) = (1), (30)
u(x,O):%(x, =0, x>0 31

The exact solution of 29-(31Yis u = g(r — x/c) if t = x/c,
and ¥ = 0 otherwise. Analogously to the three-dimensional
case, we introduce the two artificial boundaries x = Xy and
x = Xg. An exact local NRBC on & in this simple case is the
well-known Sommerfeld condition {11,

d
CLBE-F—E:O,

x = Xg.
dx Ot ?

(32)

Note that this NRBC has the same form as the NRBC (24),
although (24) involves the variable ¥ = pu rather than u itself.
Now we construct a NRBC which is the one-dimensional
analogue of the Kirchhoff NRBC (6). It is
(X, ) = u(Xq,t — (Xg — Xg)c). (33)
This condition simply states that information propagates to the
right with speed ¢; thus the value of u at Xy at time ¢ is the
same value at Xy at the retarded time T = r — d/c, where d is
the distance Xy — Xg. Clearly the NRBC (33) is exact. It has
the same properties as the Kirchhoff NRBC (6}, namely it
involves the history at x = Xy and yet only a fixed amount of
this history. On the other hand, the NRBC (33) is much easier
to analyze than (6). We choose the ratio At/h such that
hNg/c = NgpAt, where Ny, is an integer number. Then the
discrete version of (33) is u?%)! = u,’(,:pf_j,;xi»;ep.

One important difference between (6) and (33) is that (6)
involves an integration, which we perform numerically (see
(17)), and (33) does not. It may seem possible that the instability
previously observed in the three-dimensional case is generated
by inaccuracies associated with the calculation of the Kirchhoff
integral, and hence it would not appear in the one-dimensional
case. To check this, we have implemented a scheme to solve
(29)—(31) and (33), using the nondissipative central difference
stencil (25) (where v is replaced by u). We setc = 1, g = sin
L Xa = 1.0, Ny = 10, and Ar = 0.05. The two artificial
boundaries are N, grid points apart, where Ny, 1s an integer
between 1 and 9.

The result of this experiment was that instability appeared
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F1G. 6. Solutions x{ X3, t} of the one-dimensional model problem obtained
by using the Kirchhoff-type NRBC, for Ng, = 1 and Ng, = 3.

for all values of Ny, except the value Ny, = 1. Figure 6 shows
the numerical solution obtained at x = Xg with Ny = | and
Ng. = 3. The instability which develops in the latter case at
about = 8 is clear. This demonstrates that the instability
generated by the Kirchhoff NRBC (6) is not related to the
calculation of the integral which appears in that formula, but
it is associated with the ‘‘retarded-time property’” which is
inherent in (33) as well.

We analyze this instability in a simple special case. We
consider the problem (29)—(31) and (33}, and discretize it using
three grid points (plus the one at the boundary x = 0). Thus
Xp = 3h. We also choose At = h/(2¢). The discrete equa-
tions are

uf™ = g () (34
uit =025uf+ 1.5+ 025u} — uj! 35
Wit =025u)+ 1.5uf+025uf — ul™! (36)
. i, Ngo=1, 37
uit = (
: u’f_3, Ndis =72 )

Equation (34) is the discrete version of (30). Equations
(35) and (36) are obtained from the central difference sten-
cil (25), which is stable for our choice of Courant number,
cAi/h = 1/2. Equation (37) is the discrete version of the
NRBC (33).

To check the stability of the scheme (34)-(37), we first
bring it to the matrix form U""' = DU" Let u* be the three-
dimensional vector whose entries are u}, 13, and u4. Then (34)—
(37) may be written as

uwt = Au" + Bu"' + Cu*? + Fr, (38)

where
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15 025 o -1 0 O
A=025 15 025| B=|o0 -1 0}
0 0 0 0 I
[0 0 o
cC=j0 0 0] (39)
L 0 0
"={0.25g(1,) 0 O} (40)

In (39) ]] = 1, ]2 =0 ideis = I, and Il = 0, [2 =1 ideis =
2. Now we define the three auxiliary variables,

P=u" q=uv% r=uw’ “4n

Then (38) and (41} can be written in the augmented form,

' [A B 0 C|(u)" (F
p I 0 0 oflp 0
af “|o 1 0 ol|)qf "o “42)
r 0 0 I 0f]r 0

This is a [2-dimensional system of equations. The submatrices
I are the three-dimensional unit matrices. We denote the aug-
mented matrix in (42) by D. To examine the stability of the
scheme we consider the homogeneous version of (42), namely
we set g = 0 in (40). Then (42) assumes the desired form
Un+l = DUH

Now, the stability of the scheme is determined from the
spectral radius of the matrix D, denoted p(D). The scheme is
unstable if p(D) = max| A, (D) > 1, where the A,(D) are the
eigenvalues of D. We applied an eigenvalue-finder software to
the matrix in (42) and obtained p(D) = 0.892 for the case
Ny, = 1 and p(D) = 1.016 for the case Ny, = 2.

These results agree with our earlier observation that the
scheme is stable for Ny, = 1, but unstable for Ny, = 2. The
fact that p(D} is only slightly larger than one in the unstable case
explains the relatively long time that it takes for the instability to
manifest itself in the numerical solution. In fact, it can be shown
that the measure for the time o instability 7(e) that we have
considered before, is of order 1/log p(D). Thus, if p(D) is
almost 1 then T(¢} is large.

It seems that the three-dimensional case is very similar in
character. In fact, the time-to-instability results obtained in the
one- and three-dimensional cases were found experimentally
to be quite similar. The spectral radius of the amplification
matrix is apparently slightly larger than one (although this is
hard to check directly), and it can be made cioser to one by a
careful choice of the computational parameters, as our experi-
ments in the previous section show., We note that in the three-
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dimensional case we did not obtain a stable solution for any
choice of Ny, (see Table 1), unlike the one-dimenstonal case,
where Ny, = 1 leads to a stable scheme.

A DISSIPATIVE NUMERICAL SCHEME

Now we replace the non-dissipative interior stencil (25) by
a dissipative stencil. We choose the Lax—Wendroff scheme,
which is explicit, dissipative, second-order accurate in Space
and time, and stable if cAt/h = 1 [19]. First we apply it to
the one-dimensional model problem (29)—(31). In order to do
this, we recast the wave equation (29) as a system of two first-
order equations. We define ¥, = du/dtand ¥; = cou/dx. Then
(29) is written as

CLOT L SN @3)
at dx
where
Yl 0 -
Y= , E= (44)
Yz -C 0
Now the Lax—-Wendroff scheme for (43) is
At
Yift=vi- _Z};E(Y;H —Yi-)
(45)

2
s (%) B (Yiu, - 2¥1 + V3o,
Note that from (44) E? = ¢’ I, and so E? in (45) may be replaced
by the scalar ¢*. The explicit formula (45) is used to npdate all
the interior grid points.

We must accompany (45) by boundary and initial conditions.
It is easy to see that the Kirchhoff-type NRBC (33) maintains its
form when written in terms of the vector Y; namely it becomes

Y(Xg, 1) = Y(Xo, 1 — (Xg — Xy)c). (46)
In other words, not only u, but also the derivatives ¥, and ¥
“‘propagate to the right”” with speed ¢. Similarly, the discrete
version of (46) is Y"N;' = Y;'v;:\?d’iscwp. The boundary condition
(30) at x = 0 implies (V\}§*' = g"*', where g"*' is the value
of the derivative of g{(f) at time step n + 1. A boundary
condition for ¥; at x = 0 is also needed. Applying forward
difference approximation in x and ¢ to the second equation in
(43), we obtain

. A . .
(Y = (Y + 7’ ((Y)! = (YR, (47)
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FIG.7. Solutions 1t(Xg, t) of the one-dimensional model problem obtained

by using a dissipative scheme.

From (31} we deduce the initial condition Y} = 0, for all grid
points A.

We also write the Sommerfeld NRBC (32) in terms of Y.
From (32) we have ¥, + ¥, = 0 at x = X,;. We differentiate
this equation in time and use the second equation in (43) to
get dY,/or + coY/ox = 0. Then we apply the difference
approximations (26). In this way we get the two boundary con-
ditions,

R = (m, S, - (g

48
(VR =~V “

We use the Lax—Wendroff interior stencii (43) and either
the Kirchhoff or the Sommerfeld NRBC at x = Xg. In each
time step we obtain the approximate values of ¥; and Y,. In
order to obtain an approximation to the original variable u
itself, we integrate Y7 = du/at in time by using after time step
a + 1 the centered formula

At
uitl =y ?((Y.)j;*' + (Yh). (49)

Wesetc =1, g =sint, Xq = L.O, N, = 10, &r = 0.05,
and Ny, = 3. These are exactly the same parameters which
were used previously to obtain the results shown in Fig. 6 in
the nendissipative case. The solution u at x = Xg as a function
of time is shown in Fig. 7. The graphs corresponding to the exact
solution and to the solutions obtained by using the Kirchhoff and
Sommerfeld NRBCs are compared. We see that no instability
arises in the Kirchhoff solution and, moreover, it is slightly
more accurate than the Sommerfeld solution. No instability was
exhibited with any other cheice of the parameters as well.
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Now we turn to the three-dimensional case. We apply the
dissipative scheme to the spherically symmetric problem de-
scribed previously (see (22), (23)). We set ¢ = 1, Rr = 0.1,
g =sin 4f, Ry = 0.7, Rg = 1.0, Ny, = 300, N, = 900, and
Ar = 0.0015. These are exactly the same parameters which
were used to obtain Figs. 3 and 4 in the nondissipative case.
In Fig. 8 we show the normalized global errors, as defined by
(27), corresponding to the numerical solutions obtained by us-
ing the local NRBC {24) and the Kirchhoff NRBC. Thus, the
errors shown in Fig. 4 for the nondissipative case may be
compared to those shown in Fig. 8 for the dissipative case.
Again, we see that no instability is generated in the latter.

The relative errors corresponding to the local and Kirchhoff
NRBCs are very similar, and cannot be distinguished in Fig.
8. Note the relatively large errors for very small times. They
are the result of using the derivatives of u with respect to x
and ¢ as the primal variables in (43}, rather than « itself. There is
an incompatibility when 1 — (0 between the boundary condition
Y(Rr, t) = 4 cos 4r for + > O and the initial condition
Yi{p, 0y = 0. Thus, the solution ¥, is discontinhous in time at
t = 0, and the Lax—Wendrotf scheme spuriously ‘‘smears”
this discontinuity.

STABILITY ANALYSIS FOR THE DISSIPATIVE CASE

[n this section we consider the one-dimensional model prob-
lem (29)—(31) and prove that the scheme consisting of the
dissipative Lax-Wendroff interior stencil (45) and the Kirch-
hoff NRBC (46) on the artificial boundary is indeed stable. We
use the Goldberg—Tadmor general theory [20, 21] to establish
stability. As opposed to the well-known GKS theory [22], the
Goldberg—Tadmor theory provides only sufficient criteria for
stability. However, it is much simpler to apply in practice than
the GKS theory, and so in many cases it provides a convenient

4.08
0.06 4
——— Loca! NRBC
0.04 - wmwessenesss  Kirchhoff
b
£
L3
0.02.‘
0.00}
-0.02 T T v v v v v —
-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 B.O 9.0
time

FIG.8. The normalized errors, as defined by (27), generated by the dissipa-
tive scheme using the local NRBC (24) and the Kirchhoff NRBC (6).
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alternative to the latter. In both theories, stability is examined
in the sense of Definition 3.3 in [22], namely in the sense of
uniform boundedness of the solution in finite time infervals.

The first step needed in order to apply the Geldberg—Tadmor
theory is to diagonalize the system (43). This is easily done,
and we reduce (43) to the two uncoupled equations,

ay 24
aIchaI—O c—=1 (50)
The first equation corresponds to outgoing waves (with refer-
ence to the right boundary x = Xg ), whereas the second corre-
sponds to incoming waves. According to [20] only the first
equation is to be tested for stability. It is also easy to show
that the Kirchhoff boundary condition applies to the uncoupled
variables y, and v,. Thus,

n(Xa, 1) = W(Xy, 1 — (Xg — Xodlc) (51
The left boundary condition at x = 0 is ignored in the stability
analysis. This is permitted since if the left and right semi-
infinite problems are stable, then by Theorem 5.4 of [22] the
two-boundary problem is also stable.

Now we refer to Theorems 2.1 and 2.2 in [20]. They provide
several criteria for the stability of the scheme. One of these
criteria states that the scheme is stable if (a) the interior stencil
is dissipative, (b) the interior stencil is two-level, and (c) the
boundary condition satisfies the von Neumann condition and
is boundedly solvable. Conditions (a} and (b) are satisfied by the
Lax—Wendroff scheme (45). The Kirchhoff boundary condition
(51} is explicit; hence it is boundedly solvable by Lemma 2.1
of [20]. Thus it remains to show that (51) satisfies the von
Neumann condition, which is defined in {20] in terms of the
“‘boundary characteristic function.”

The boundary characteristic function is defined as

R(z k) = Eﬂ Ci(2) &/, (52)
=
where
q
Clz)=Ciyy — Zﬂ 77 G (53)

Here, m, g, and the coefficients C,, are parameters of the bound-
ary condition under consideration. In the case of the Kirchhoff
boundary condition (51), the only nonzero coefficients are
Co-y = 1 and Cy v, = L. From (53), Cfz) = 8 —
7 "% 8w, » where &, is the Kronecker delta, Thus the boundary
characteristic function for the Kirchhoff condition is

R(z €)= 1 — 77N iV, (54)

GIVOLI AND COHEN

We remark that the functions C(z) in our case satisfy Assump-
tion 1.5 in [20] which is essential for stability.

Now, according to Definition 2.2 in [20], the boundary condi-
tion satisfies the von Neumann condition if the roots z(x) of
R(z, ) = 0 satisfy |z(x)| = 1 for all |«| = 1. In our case,
(34) gives the roots z{k} = &=, which obviously satisfy

the condition. Thus, stability is established.

CONCLUDING REMARKS

We have considered numerical schemes which involve non-
local Kirchhoff-type NRBCs. These NRBCs are exact, and
hence they ensure highly accurate numerical results, if discret-
ized properly. Moreover, they do not entail large computational
effort and aveid the difficulties otherwise encountered in the
application of exact NRBCs in the time-dependent case. There-
fore, the use of Kirchhoff-type NRBCs for three-dimensional
time-dependent problems of acoustic and elastic waves holds
a lot of promise.

We observed that a long-time instability develops if the
intertor stencil used is nondissipative, However, it is possible
to delay the time to instability by careful parametrization. More-
over, it is possible to totally eliminate the instability by using
a dissipative interior stencil.

Phenomena of weak instabilities generated by boundary con-
ditions in hyperbolic initial boundary value problems were
discussed by Trefethen [23]. His theory, which extends the
GKS theory [22], shows that such instabilities are caused by
spurious radiation of wave energy from the boundary at a
nonnegative numerical group velocity. Numerical demonstra-
tion of these effects in the context of nonreflecting boundary
conditions is given in [24}.

A numerical procedure which is different than the one consid-
ered here, but related to it, was proposed in [1]. In this proce-
dure, one takes the normal derivative of the Kirchhotf formula
{6) and then considers the limit when & approaches %B. This
results in an exact nonlocal NRBC which involves a single
artificial boundary and preserves the good qualities of the Kirch-
hoff NRBC. However, the stability properties of this new NRBC
are unknown and must be investigated.
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